/api/segment_subsegment_exploreX-Customer-Api-Id: <uuid>
X-Secret: <secret>
Content-Type: application/json
customers: array<object>
id: string
frequency: int
amount_spent: float
product_types: array<string>
labels: object<customer_id: parent_cluster_id>
target_cluster: int (optional)
k_range: array<int> (optional, default = [2,3])
{
"customers":[
{ "id":"C001","frequency":28,"amount_spent":4120.75,"product_types":["laptop","mouse","keyboard","monitor"] },
{ "id":"C002","frequency":5, "amount_spent":190.40, "product_types":["tea","coffee"] },
…
],
"labels":{
"C001":2,"C002":0,"C003":0,"C004":0,"C005":0,"C006":0,"C007":1,…
},
"target_cluster":1,
"k_range":[2,3]
}
{
"subsegment_results":{
"1":{
"benchmark":[
{"k":2,"silhouette":0.4935,"davies_bouldin":0.5209},
{"k":3,"silhouette":0.4140,"davies_bouldin":0.4869}
],
"best_k":2,
"selection_description":"Inside parent-cluster 1, k = 2 yielded the highest silhouette (0.493) and lowest Davies-Bouldin (0.521).",
"nested_centroids":{
"columns":["frequency","amount_spent","n_categories"],
"values":[[21.5,2223.5,1.75],[25.33,3049.2,3.0]]
},
"nested_labels":{
"C014":0,"C026":0,"C030":0,"C007":1,"C012":1,"C033":1
},
"nested_cluster_legend":[
{"cluster_id":0,"n_customers":4,"avg_spend":2223.5,"avg_frequency":21.5,"top_categories":"fitness-watch, fridge"},
{"cluster_id":1,"n_customers":3,"avg_spend":3049.2,"avg_frequency":25.33,"top_categories":"smart-tv, soundbar"}
],
"nested_interpretations_en":{
"0":"4 customers, avg spend 2 224, 21.5 purchases/mo. Top: fitness-watch, fridge.",
"1":"3 customers, avg spend 3 049, 25.3 purchases/mo. Top: smart-tv, soundbar."
}
}
}
}
Performs a secondary K-Means sweep inside each parent cluster (or specified target_cluster), auto-selecting k by silhouette/Davies-Bouldin, and returns subcluster benchmarks, centroids, labels, legends, and English interpretations.
• Tiered loyalty perks • Hyper-personalized recommendations • “Segment-of-one” exploratory analysis
← Back to all routes