/api/anomaly_transactionsPOST https://api.Fluxrails.app/api/v1/ai/anomaly_transactions
X-Customer-Api-Id: <uuid>
X-Secret: <secret>
Content-Type: application/json
// Example Response Body
{
"kpi": {
"detected_pct": 14.29, // % of rows flagged ≥ threshold
"auc": 1.0 // ROC-AUC on labeled subset (if any labels)
},
"details": [
{
"id": "txn-001",
"anomaly_score": -0.1224,
"fraud_flag": false
},
{
"id": "txn-004",
"anomaly_score": 0.0064,
"fraud_flag": true
},
{
"id": "txn-006",
"anomaly_score": -0.0987,
"fraud_flag": false
}
],
"interpretation": "14.29% of records flagged by IsolationForest. Threshold = quantile(0.96) = -0.0000."
}
// Request Body Schema
{
"contamination": number, // between 0 and 1, expected share of anomalies
"rows": [
{
"id": "string", // unique transaction ID
"features": { // any numeric or categorical fields
"<key>": <number|string>, …
},
"label": 0|1|null // optional ground-truth: 1=fraud, 0=legit, null/unset=unlabeled
}
]
}
// Example Request Body
{
"contamination": 0.04,
"rows": [
{
"id": "txn-001",
"features": { "amount": 58.90, "channel": "web", "country": "BR", "hour": 17 },
"label": 0
},
{
"id": "txn-004",
"features": { "amount": 9100.00,"channel": "pos", "country": "NG", "hour": 2 },
"label": 1
},
{
"id": "txn-006",
"features": { "amount": 820.00, "channel": "mobile", "country": "BR", "hour": 23 }
}
]
}
• Unsupervised anomaly scoring for transactions: flags the top-weird rows based on IsolationForest, LOF, or Auto-Encoder bake-off. • `contamination` sets the expected anomaly rate (decision threshold). • Returns per-transaction `anomaly_score` (higher = more anomalous) and boolean `fraud_flag`. • Provides batch KPIs: `detected_pct` and optional `auc` on labeled subset. • Delivers a one-line `interpretation` summarizing model choice, threshold, and flag rate.
• Stream real-time transaction feeds into this route for instant fraud triage. • Sort `details` by `anomaly_score` to prioritize high-risk reviews. • Monitor `detected_pct` drift to adjust `contamination` or feature set. • Feed back confirmed labels to improve model selection (higher AUC). • Integrate high-score flags into your risk engine for blocking or step-up authentication.
← Back to all routes